Statistics of High Frequency Acoustic Boundary Scattering and Vector Ambient Noise Fields

نویسنده

  • Anthony P. Lyons
چکیده

The long-term goal of the present high-frequency scattering statistics work is to examine the links between environmental parameters of shallow water boundaries and the statistics of high frequency, broadband acoustic fields using a combination of at-sea measurements, ground truth and theoretical modeling. The influence of the properties of the boundaries to the scattered envelope statistics and noise fields will be examined in detail. The proposed project is designed to (1) examine experimental acoustic data to determine how environmental properties (e.g. roughness or bubble clouds) influence statistical distributions obtained with broadband, acoustic systems in shallow water including SAS and vector sensor systems; (2) test current models or develop models where none exist which link measured environmental parameters (e.g. roughness, bubble distributions) and system characteristics (e.g. bandwidth, frequency) to predict these statistics in realistic shallow-water ocean environments. The proposed effort will lead to methods for modeling and predicting properties that may be used to minimize the negative impact of the environment on: 1) detection and classification of targets on or near the seafloor in shallow water; and 2) processing of data taken with vector sensor arrays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band

This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Shock tunnel noise measurement with resonantly enhanced focused schlieren deflectometry

The character of the boundary layer noise and ambient tunnel noise are of interest in the experimental study of laminar to turbulent transition. The instability mechanism in hypersonic flow over slender bodies is the acoustic mode. A number of investigations of flow over a slender cone in high-enthalpy facilities have been performed; however, measurements of the boundary layer noise and ambient...

متن کامل

High-frequency ambient noise in warm shallow waters

In deep water, the dominant sources of natural ocean noise are often events occurring at the sea/air interface. In shallow water, particularly if it is warm, this is often no longer the case. Where wind-related noise is less pronounced, snapping shrimp alone can easily dominate the soundscape over two decades of bandwidth. Particularly for ambient noise imaging, the high frequency content of th...

متن کامل

Determination of sediments diameter using acoustic waves

The use of acoustic waves in researches related to sea water is of most importance among scientists recently. Since these waves are the only waves, transmitted in water with lowest attenuation and high speed, they can be used in many scientific fields. The main goal of this research is to better understand the physics and mechanisms of sound-seabed interaction, including acoustic penetration, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010